Все |0-9 |А |Б |В |Г |Д |Е |Ж |З |И |К |Л |М |Н |О |П |Р |С |Т |У |Ф |Х |Ц |Ч |Ш |Щ |Э |Ю |Я

Каталог статей Принципы действия устройств Автомобильные узлы

Поиск по тегам : автомобильный генератор, дополнительное плечо выпрямителя, бортовая сеть автомобиля, вентильный генератор, Регулятор напряжения, стабилизация


Электронные системы зажигания PDF Печать E-mail
Принципы действия устройств -
Оглавление
Электронные системы зажигания
Особенности рабочего процесса транзисторной системы зажигания
Принципы построения узлов бесконтактных систем зажигания для автомобильных ДВС 1. Датчики углового положения коленчатого вала двигателя
2. Магнитоэлектрические датчики
3. Датчик на эффекте Холла
4. Коммутаторы
5. Способы защиты выходных транзисторов от перенапряжений
6. Программный регулятор времени накопления запасаемой энергии
7. Адаптивный регулятор времени накопления
8. Контроллеры
Особенности конструкций аппаратов электронных систем зажигания для автомобильных двигателей 1. Датчики-распределители
2. Катушки зажигания
3. Коммутаторы
4. Контроллеры
Преимущества электронных систем зажигания


Магнитоэлектрические датчики. Наиболее распространенным типом магнитоэлектрического датчика является генераторный датчик коммутаторного типа с пульсирующим потоком. Принцип действия такого датчика заключается в изменении магнитного сопротивления магнитной цепи, содержащей магнит и обмотку, при изменении зазора с помощью распределителя потока (коммутатора). На рис. 4 показана принципиальная схема магнитоэлектрического датчика коммутаторного типа. При вращении зубчатого ротора в обмотке статора в соответствии с законом индукции возникает переменное напряжение

где k - коэффициент, зависящий от характеристик магнитной цепи; w - число витков обмотки; n - частота вращения распределителя потока; dф/dα- изменение потока Ф в зависимости от угла поворота.

Когда один из зубцов ротора 4 приближается к полюсу статора 1, в обмотке 3 нарастает напряжение. При совпадении фронта зубца ротора с полюсом статора (со средней линией обмотки) напряжение на обмотке достигает максимума, затем быстро меняет знак и увеличивается в противоположном направлении до максимума (рис. 5) при удалении зубца. Из формулы (4) видно, что пиковое значение Uвых линейно изменяется с частотой вращения распределителя потока. На рис. 6 показан характер изменения сигнала Uвых по углу поворота коленчатого вала при разной частоте вращения n распределителя потока.

Нетрудно видеть, что напряжение очень быстро изменяется от положительного максимума до отрицательного, поэтому нулевой переход (точка 0) между двумя максимумами может быть использован для управления системой зажигания при получении точного момента искрообразования. Однако точку перехода через ноль сложно детектировать с помощью электроники, так как схема будет чувствительна к сигналам помехи, т. е. не будет удовлетворять требованиям помехозащищенности. Поэтому для получения момента искрообразования используют точки а и Ь, которые выбираются на допустимых низких уровнях. При этом обеспечивается нечувствительность схемы детектирования к помехам и надежное срабатывание схемы в период пуска двигателя.

Распределитель потока, или зубчатый ротор, устанавливается на распределительный валик распределителя зажигания и изготавливается из мягкой стали. Число зубцов зависит от числа цилиндров двигателя. Необходимое поле создает постоянный магнит.

Рассмотренная магнитная система генераторного датчика чувствительна к влиянию изменений зазора, происходящих из-за конструктивных допусков, вибраций, передаваемых от двигателя деталям, входящим в состав магнитной цепи, что приводит к недопустимому асинхронизму момента искрообразования по цилиндрам двигателя. Поэтому на практике применяется симметричная магнитная система, которая обеспечивает для каждого положения распределителя потока средний зазор, являющийся суммой элементарных зазоров.

Принципиальная схема генераторного датчика коммутаторного типа с симметричной магнитной системой для четырехцилиндрового двигателя представлена на рис. 6.

Разработка постоянных магнитов, выполненных на основе новых магнитных материалов, таких как магнитоэласты, магниторезина, позволила резко снизить стоимость и массу датчика, увеличить его надежность.

Другим типом магнитоэлектрических датчиков, нашедших применение в автомобильных системах зажигания, является датчик с переменным потоком. Он состоит из неподвижной катушки и постоянного магнита, жестко связанного с валиком распределителя зажигания, причем число пар полюсов в магните равно числу цилиндров двигателя. Такие магнитные системы называются датчиками с вращающимися магнитами (рис. 7). Работа датчика характеризуется знакопеременным магнитным потоком и симметричной формой выходного напряжения (рис. 8).

Сигнал датчика с вращающимся магнитом требует более тщательной обработки в цепи детектирования с целью компенсации электрического смещения момента искрообразования в зоне низких частот вращения распределительного валика.



 
Добавить в избранное | Сделать стартовой

Rambler's Top100 Рейтинг@Mail.ru

(c)