Все |0-9 |А |Б |В |Г |Д |Е |Ж |З |И |К |Л |М |Н |О |П |Р |С |Т |У |Ф |Х |Ц |Ч |Ш |Щ |Э |Ю |Я

Каталог статей Принципы действия устройств Автомобильные узлы

Поиск по тегам : автомобильный генератор, дополнительное плечо выпрямителя, бортовая сеть автомобиля, вентильный генератор, Регулятор напряжения, стабилизация


Электронные системы зажигания PDF Печать E-mail
Принципы действия устройств -
Оглавление
Электронные системы зажигания
Особенности рабочего процесса транзисторной системы зажигания
Принципы построения узлов бесконтактных систем зажигания для автомобильных ДВС 1. Датчики углового положения коленчатого вала двигателя
2. Магнитоэлектрические датчики
3. Датчик на эффекте Холла
4. Коммутаторы
5. Способы защиты выходных транзисторов от перенапряжений
6. Программный регулятор времени накопления запасаемой энергии
7. Адаптивный регулятор времени накопления
8. Контроллеры
Особенности конструкций аппаратов электронных систем зажигания для автомобильных двигателей 1. Датчики-распределители
2. Катушки зажигания
3. Коммутаторы
4. Контроллеры
Преимущества электронных систем зажигания

Коммутаторы. По конструктивному исполнению и технологии изготовления коммутаторы контактно-транзисторных и бесконтактных систем зажигания могут быть разделены на три группы:

- выполняемые на дискретных полупроводниковых компонентах и корпусных интегральных микросхемах, устанавливаемых на печатных платах;

- выполняемые на базе толстопленочной технологии с применением стандартных бескорпусных и дискретных компонентов;

- изготавливаемые по гибридной технологии и использующие специальную твердотельную заказную микросхему, на которой реализуются основные функциональные узлы коммутатора.

Коммутаторы контактно-транзисторных систем и коммутаторы с постоянной скважностью выходного импульса тока для бесконтактных систем функционально просты и содержат небольшое число полупроводниковых компонентов (как правило, не более четырех транзисторов), они относятся к первой группе. Их основой служит литой алюминиевый корпус, имеющий ребристую наружную поверхность для увеличения теплоотдачи. Внутри корпуса расположены все элементы коммутатора, за исключением выходного транзистора, который монтируется на корпусе в специальном «кармане».

Многие типы транзисторов (п-р-п-типа) требуют изоляции от корпуса коммутатора, и поэтому они монтируются через специальную прокладку. Для снижения теплового сопротивления перехода между корпусом коммутатора и изоляционной прокладкой наносят слой теплопроводной пасты. Для подключения коммутатора к бортовой сети автомобиля и к элементам системы зажигания используется клеммная колодка.

Коммутатор ТК102А (рис. 27) относится к первой группе. Он предназначен для работы в контактно-транзисторной системе зажигания для автомобилей с восьмицилиндровыми двигателями, но может быть применен для работы с любым классическим распределителем зажигания. В качестве нагрузки используется катушка 5114 (W2/W1=235; L1=3,7 мГн; R1=0,42 Ом). Для ограничения первичного тока используется добавочное сопротивление СЭ107 (1,04 Ом).

Схема коммутатора ТК102А (рис. 28) содержит один мощный германиевый транзистор VT1 (ГТ701А), стабилитрон VD2 (Д817В) и диод VD1 (Д7Ж), служащие для защиты от перенапряжения силового транзистора VТ1, дроссель L1 и резистор R1, предназначенные для ускорения процесса закрывания транзистора VT1, конденсатор С1 первичного контура катушки зажигания, конденсатор С2, служащий для защиты компонентов схемы коммутатора от всплеска напряжения в бортовой сети автомобиля.

Типичным примером коммутаторов для бесконтактных систем зажигания может служить коммутатор 13.3734, разработанный на базе первого серийного отечественного коммутатора ТК200 для БСЗ «Искра». Коммутатор предназначен для совместной работы с бесконтактным магнитоэлектрическим датчиком, катушкой зажигания 5116 и добавочным сопротивлением 14.379. Схема коммутатора (рис. 29) содержит выходной транзистор VТЗ (КТ848А), каскад предварительного усиления на транзисторе VТ2 (КТ630Б) и резисторе R7, формирователь сигнала датчика на транзисторе VТ1 (КТ6305) и элементах R1-RЗ, С1, VD1, VD2.

Между выходом и входом коммутатора включена положительная обратная связь (R10, С7), обеспечивающая стабильную работу коммутатора на пусковых частотах вращения валика распределителя (20÷30 мин-1). Цепочка RЗС1 служит для уменьшения электрического смещения момента зажигания в зависимости от частоты вращения датчика.

Коммутатор содержит также цепи защиты выходного транзистора (С5, С6, R9) и элементов схемы (С2-С4, VDЗ, VD4, R8). Конструктивно коммутатор выполнен на печатной плате, на которой смонтированы маломощные элементы схемы. Плата установлена в оребренный литой дюралюминиевый корпус, в котором установлены силовые элементы схем.

Первый отечественный коммутатор с нормируемой скважностью импульсов выходного тока 36.3734, применяемый на автомобиле ВАЗ-2108, выполнен также по дискретной технологии. Коммутатор рассчитан для работы с бесконтактным датчиком на эффекте Холла. В качестве нагрузки используется катушка 27.3705 (W2/W1 =85; R1 =0,5 Ом; L1 =3,8 мГн). В коммутаторе 36.3734 реализовано программное регулирование времени накопления энергии в первичной обмотке катушки зажигания, активное ограничение уровня первичного тока (8÷9 А), ограничение амплитуды импульса первичного напряжения (350÷380 В), безыскровое отключение первичного тока при остановленном двигателе (Тоткл= 1,5÷3 с). Последнее предназначено для плавного закрывания коммутационного транзистора с целью предотвращения искрообразования при остановке двигателя, когда катушка зажигания осталась под током.

На рис. 30 приведена электрическая принципиальная схема коммутатора 36.3734. Основные функциональные узлы схемы выполнены на операционных усилителях DА1.1-DА1.4, которые являются компонентами микросхемы К1401 УД1. На базе усилителей DА 1.2 и DА 1.3 реализованы интегратор и компаратор схемы нормирования скважности импульсов выходного тока. На усилителе DА1.1 собрана схема безыскрового отключения тока, на усилителе DА1.4 - компаратор схемы ограничения амплитуды выходного тока.

В качестве выходного транзистора применен транзистор Дарлингтона типа КТ848А. Конструктивно коммутатор представляет собой печатную плату, на которой размещены радиокомпоненты схемы, за исключением выходного транзистора VT4, защитного диода VD7 и стабилитрона ограничителя напряжения питания VD4, которые смонтированы на корпусе коммутатора. Для подключения коммутатора к бесконтактному датчику Холла, к катушке зажигания и источнику питания используется семиконтактный разъем.

К недостаткам коммутаторов первой группы можно отнести большие габаритные размеры и массу изделий, а также при крупносерийном производстве низкую технологичность и недостаточную надежность в связи с большим количеством радиокомпонентов.

Существенного снижения массогабаритных показателей можно добиться при изготовлении коммутаторов по толстопленочной технологии с применением стандартных бескорпусных компонентов. В то же время они относительно дороги, трудоемки в производстве и поэтому не нашли широкого применения.

Наилучшими показателями с точки зрения трудоемкости, технологичности и надежности обладают коммутаторы третьей группы. Они содержат специальную заказную микросхему, на которой реализуются основные функциональные узлы: схема нормирования скважности с адаптацией по уровню выходного тока, схема безыскрового отключения тока, устройство ограничения тока и некоторые другие узлы. По гибридной толстопленочной технологии выполняется силовая часть схемы коммутатора с элементами защиты от импульсных перегрузок по цепи питания.

Примером использования этой технологии может служить коммутатор 0.227.100.103 фирмы Bosch (рис. 31).

Схема содержит следующие основные элементы: бескорпусный выходной транзистор VT1; специализированную микросхему DА1 (МА 7355) совместно с навесными миниатюрными конденсаторами С2-С5, выполняющую основные функции коммутатора; корпусные диод VD1, стабилитрон VD2, миниатюрный конденсатор С1 и толстопленочные резисторы RЗ, R4, выполняющие функции защиты от импульсных перенапряжений в бортовой сети и перепутывания полярности батареи.

Схема также содержит толстопленочные резисторы, служащие для измерения и подстройки требуемых уровней первичного тока R6, R7, R10 и первичного напряжения R8, R9. RС-цепь защиты выходного транзистора выполнена на дискретных элементах С7, R11.

Отечественной промышленностью также освоен выпуск аналогичных коммутаторов. Внешний вид одноканального и двухканального коммутаторов показан на рис. 32.

В основе одноканального транзисторного коммутатора 3620.3734 (рис. 33,а) лежит специализированная микросхема КР1055ХП1, выполняющая его основные функции.

1. Управление силовым транзистором, прерывающим ток в первичной цепи системы зажигания.

2. Регулирование времени протекания тока в первичной цепи.

3. Ограничение максимального первичного тока.

4. Переход в режим расширения длительности выходного импульса тока первичной цепи, если значение тока разрыва Iр ниже (0,9÷0,98) Iр ном.

5. Восстановление функции регулирования времени протекания тока в течение заданного промежутка времени.

6. Формирование управляющего сигнала для работы тахометра.

7. Безыскровое отключение первичного тока при постоянном высоком уровне сигнала с выхода микропереключателя Холла.

8. Защита от перенапряжений в бортсети и инверсного включения источника питания.

В качестве выходного транзистора VТ1 применен транзистор Дарлингтона типа КТ898А с встроенным стабилитроном. Навесные конденсаторы СЗ-С6 совместно в резистором R6 обеспечивают выполнение микросхемой основных функций.

Резисторы R8 и R9 служат для измерения первичного тока, используемого в качестве управляющего сигнала для микросхемы DА1. Резисторы R1, R2 и R3 обеспечивают необходимое напряжение питания микросхемы и микропереключателя Холла. Резистор R5 служит нагрузкой для микропереключателя Холла. Стабилитроны VD1 и VD2 защищают микросхему и микропереключатель Холла от перенапряжений в цепи питания.

Кратковременные всплески высокого напряжения, а также перенапряжения обратной полярности гасятся конденсаторами С1 и С2. Резистор R4 определяет силу тока базы выходного транзистора и, следовательно, значение тока в первичной цепи. Цепочка обратной связи R7, С7 улучшает качество переходного процесса при регулировании первичного тока.

Электрическая схема двухканального коммутатора 6420.3734 (рис. 33,6) разработана на основе электрической схемы коммутатора 3620.3734.

Основное различие заключается в наличии двух специализированных микросхем КР1055ХП1 (DА1 и DА2), управляющих работой двух выходных транзисторов VT2 и VT3. В свою очередь микросхемы управляются сигналом с выхода датчика импульсов (или контроллера) через разделения каналов коммутатора посредством ключевого каскада на транзисторе VT1 (КТ352БМ).

Схема коммутатора также снабжена устройством формирования сигнала управления тахометром (VD3, VD4, R22). Конструктивно коммутатор выполнен на одной печатной плате, так же как и коммутатор 3620.3734.

Создан коммутатор с использованием специализированной интегральной схемы L497B, выполненной на основе толстопленочной гибридной технологии.

По мере развития цифровой и микропроцессорной техники и разработки комплексных систем управления двигателем транзисторный коммутатор, сохраняя свое функциональное значение, в конструктивном плане может терять очертания самостоятельного изделия, интегрируясь в рамках единой конструкции с цифровым контроллером или катушкой зажигания. Следующим шагом на пути интеграции электронного блока является передача функции нормирования скважного выходного импульса тока в схему контроллера.

В этом случае модуль коммутатора реализует функции распределения высоковольтных импульсов, ограничения тока и первичного напряжения, выдачи сигнала обратной связи об уровне тока в катушке зажигания.



 
Добавить в избранное | Сделать стартовой

Rambler's Top100 Рейтинг@Mail.ru

(c)