Все |0-9 |А |Б |В |Г |Д |Е |Ж |З |И |К |Л |М |Н |О |П |Р |С |Т |У |Ф |Х |Ц |Ч |Ш |Щ |Э |Ю |Я

Каталог статей Справочная информация Справочник по электротехнике

Поиск по тегам : электрический ток, носители заряда, постоянный ток, переменный ток, ампер, сила тока


Уравнения Максвелла для электромагнитного поля PDF Печать E-mail

Рейтинг 3.3/5 (169 голосов)


Объяснение и создание математической модели физического процесса или явления далеко не всегда можно решить «в лоб». Зачастую, приходиться вводить к основным понятиям некоторые дополнительные аргументы, чтобы показать функцию во всей красе.

Один из ярких примеров такого подхода может служить введение Максвеллом понятия тока смещения. Это позволило ему завершить созданную им теорию электромагнитного поля, которая позволила не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.

В основе теории Максвелла лежат четыре уравнения.

1. Электрическое поле может быть как потенциальным (EQ), так и вихревым (EB), поэтому напряженность суммарного поля E = EQ + EB.

Так как циркуляция вектора EQ равна нулю


           
Активное изображение
а циркуляция вектора EB определяется выражением

           
Активное изображение
то циркуляция вектора напряженности суммарного поля

                       Активное изображение [1]

             

Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора H

           
Активное изображение

Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.

3. Теорема Гаусса для поля D
           
Активное изображение
Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью ρ, то формула [3] запишется в виде
            
Активное изображение

4. Теорема Гаусса для поля B
            
Активное изображение

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):
 
           
Активное изображение

где ε0 и μ0 – соответственно электрическая и магнитная постоянная, ε и μ – соответственно диэлектрическая и магнитная проницаемость, γ – удельная проводимость вещества.

Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями.

Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных. Для стационарных полей (E=const и B=const) уравнения Максвелла примут вид:

            Активное изображение

т.е. источниками электрического поля в данном случае являются только электрические заряды, источниками магнитного – только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрические и магнитные поля.
Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса

            Активное изображение

можно представить полную систему уравнений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

             Активное изображение

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла – интегральная и дифференциальная – эквивалентны. Однако если имеются поверхности разрыва (поверхности, на которых свойства среды или полей меняются скачкообразно), то интегральная форма уравнений является более общей.


Уравнения Максвелла в дифференциальной форме предполагают, что все величины в пространстве и времени изменяются непрерывно. Чтобы достичь математической эквивалентности обеих форм уравнений Максвелла, дифференциальную форму дополняю граничными условиями, которым должно удовлетворять электромагнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия

             Активное изображение

Первое и последнее уравнение отвечают случаям, когда на границе раздела двух сред нет ни свободных зарядов, ни токов проводимости.


Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным, т.е. электрическое и магнитное поля неразрывно связаны друг с другом – они образуют единое электромагнитное поле.




 

Комментарии  

 
#1 Strayker 22.01.2010 20:59
Спасибо огромное!Очень помогло в подготовке к экзамену!
Цитировать
 
 
#2 HammerFall 13.06.2010 20:00
Гигантское спасибо,тоже очень помогло при решении экзаменационных тестов.
Цитировать
 
 
#3 Павел Галстян 07.10.2010 19:43
Благодарю!
Цитировать
 
 
#4 ///klk/// 27.11.2010 08:50
спасибо большое, мне оч помогло
Цитировать
 
 
#5 Маша 04.01.2011 15:24
опять же-экзамен=)))
cпачибо большое!
Цитировать
 
 
#6 Анна 09.01.2011 21:05
Спасибо огромное, информация помогла для подготовки к экзамену. Добавить бы информацию про волновые уравнения ЭМВ и уравнение плоской электромагнитно й волны.
Цитировать
 
 
#7 МАРИЯ 30.05.2011 22:28
Спасибо большое! Все доступно написано. Надеюсь поможет))
Цитировать
 
 
#8 Станислав 11.01.2012 15:11
Спасибо за материал, кратко и по делу, как и надо при подготовке в экзамену!
Цитировать
 
 
#9 Ирина 13.01.2012 19:49
Спасибо за материал, очень помогло)
Цитировать
 
 
#10 идефикс 26.01.2012 17:39
очень хороший материал , все изложено четко и понятно )
Цитировать
 

Добавить комментарий

Я надеюсь, что наши посетители воспитанные люди, и не будут употреблять не нормативную лексику. Не умеющие выражаться нормальным языком, больше не смогут никогда оставлять комментарии.


Защитный код
Обновить

Добавить в избранное | Сделать стартовой

Rambler's Top100 Рейтинг@Mail.ru

(c)