Каталог статей Принципы действия устройств Электрические машины Поиск по тегам : электродвигатель, асинхронные, синхронные, с фазным ротором, с короткозамкнутым ротором, постоянного тока |
Принцип действия и конструкция синхронных машин. Холостой ход синхронных генераторов |
ОБЩИЕ СВЕДЕНИЯ На всех электрических станциях в качестве источников переменного тока используются синхронные генераторы. Их мощность колеблется от нескольких киловатт для автономных установок до 1000-1200 МВт для мощных электростанций. Синхронные двигатели также находят широкое применение. Они изготовляются серийно мощностью от нескольких десятков киловатт до 10 МВт и более на различные частоты вращения. Наряду с мощными двигателями отечественной промышленностью широко выпускаются синхронные микродвигатели различных типов мощностью от долей ватта до нескольких сотен ватт. По сравнению с асинхронными двигателями синхронные двигатели не только преобразуют электрическую энергию в механическую, но и могут генерировать реактивную мощность. Иногда синхронные двигатели, работающие без нагрузки на валу, используются в качестве источников и потребителей реактивной мощности (при этом изменяется cosφ сети). Такие синхронные машины называют синхронными компенсаторами.
КОНСТРУКТИВНЫЕ СХЕМЫ И ПРИНЦИП ДЕЙСТВИЯ СИНХРОННОЙ МАШИНЫ Синхронная машина состоит из двух основных частей: неподвижной - статора и вращающейся - ротора, и имеет две основные обмотки. Одна обмотка подключается к источнику постоянного тока. Протекающий по этой обмотке ток создает основное магнитное поле машины. Эта обмотка располагается на полюсах и называется обмоткой возбуждения. Иногда у машин небольшой мощности обмотка возбуждения отсутствует, а магнитное поле создается постоянными магнитами. Другая обмотка является обмоткой якоря. В ней индуктируется основная ЭДС машины. Она укладывается в пазы якоря и состоит из одной, двух или трех обмоток фаз. Наибольшее распространение в синхронных машинах нашли трехфазные обмотки якоря. В синхронных машинах чаще всего находит применение конструкция, при которой, обмотка якоря располагается на статоре, а обмотка возбуждения - на роторе (рис. 1). Синхронные машины небольшой мощности иногда имеют обращенное исполнение, когда обмотка якоря располагается на роторе, а обмотка возбуждения - на полюсах статора (рис. 2). В электромагнитном отношении обе конструкции равноценны.
Однако из практических соображений более предпочтительной является первая конструкция, так как в этом случае к скользящим контактам на роторе подводится мощность возбуждения, составляющая 0,3-3 % номинальной мощности машины. Во втором варианте скользящие контакты следовало бы рассчитывать на полную мощность машины. Для мощных машин, имеющих относительно высокое напряжение и большие токи, обеспечить удовлетворительную работу таких контактов весьма затруднительно. В дальнейшем будут рассматриваться синхронные машины, выполненные по первому (основному) конструктивному варианту. Рассмотрим принцип действия синхронного генератора. Если через обмотку возбуждения протекает постоянный ток, то он создает постоянное во времени магнитное поле с чередующейся полярностью. При вращении полюсов и, следовательно, магнитного поля относительно проводников обмотки якоря в них индуктируются переменные ЭДС, которые, суммируясь, определяют результирующие ЭДС фаз. Если на якоре уложены три одинаковые обмотки, магнитные оси которых сдвинуты в пространстве на электрический угол, равный 120°, то в этих обмотках индуктируются ЭДС, образующие трехфазную систему. Частота индуктируемых в обмотках ЭДС зависит от числа пар полюсов р и частоты вращения ротора п:
Для получения ЭДС необходимой частоты число пар полюсов и частота вращения должны находиться в определенной зависимости между собой. Так, для получения стандартной частоты f1= 50 Гц при р=1 нужно иметь частоту вращения n = 3000 об/мин, а при р = 24 n = 125 об/мин. Если к трехфазной обмотке якоря синхронного генератора подсоединить нагрузку, то возникший ток создаст вращающееся магнитное поле якоря. Частота вращения этого поля относительно статора
Заменяя в (2) частоту ее значением из (1), получаем n1 = n. Равенство частот вращения ротора п и поля якоря n1 является характерной особенностью синхронной машины, обусловившей ее название. В основном конструктивном варианте магнитное поле возбуждения имеет ту же частоту вращения, что и ротор, поэтому результирующее магнитное поле, созданное совместным действием обмоток якоря и возбуждения, имеет ту же частоту вращения. В обращенном варианте синхронной машины частоты вращения ротора (который в данном случае является якорем) и его поля также одинаковы, но направлены в противоположные стороны. Поэтому магнитное поле ротора, как и поле возбуждения, будет неподвижно в пространстве. Следовательно, как в одном, так и в другом случае магнитные поля возбуждения и якоря будут неподвижны относительно друг друга, образуя результирующее поле машины. При работе синхронной машины двигателем трехфазная обмотка якоря присоединяется к трехфазной сети. При этом образуется вращающееся магнитное поле с частотой вращения n1. Это поле, взаимодействуя с полем полюсов ротора, создает вращающий момент. Чтобы этот момент имел одно и то же направление, поля должны быть неподвижны относительно друг друга. Это имеет место, если ротор и, следовательно, его магнитное поле вращаются с частотой, равной n1. Поэтому в синхронном двигателе ротор как при холостом ходе, так и при нагрузке вращается с постоянной частотой, равной частоте вращения поля n1.
КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ СИНХРОННЫХ МАШИН Сердечник статора представляет собой полый цилиндр, набранный из отдельных листов электротехнической стали толщиной 0,5 мм. На внутренней поверхности этого цилиндра выштамповывают пазы для укладки обмотки якоря. Электротехническую сталь поставляют в виде листов или лент шириной не более 1 м. При внешнем диаметре сердечника менее 1 м его собирают из цельных кольцевых пластин, а при большем диаметре каждый кольцевой слой составляют из отдельных пластин, называемых сегментами (рис. 3). Сердечник размещают в станине (корпусе) статора. Пазы, как правило, имеют прямоугольное сечение. В эти пазы укладывают двухслойные петлевые обмотки, а в более мощных машинах - одновитковые стержневые волновые обмотки. Толщина и структура изоляции пазов и проводников зависит от индуктируемой ЭДС. При большом сечении проводников обмоток фаз для уменьшения добавочных потерь от вихревых токов их разбивают на ряд элементарных проводников, которые по длине обмотки транспонируют между собой. Статор синхронной машины в собранном виде показан на рисунке. По выполнению ротора машины подразделяются на явнополюсные и неявнополюсные. Явнополюсный ротор синхронных машин имеет выступающие полюсы, сердечник которых в мощных машинах набирают из пластин конструкционной стали толщиной 1- 2 мм, а в машинах небольшой мощности - из электротехнической стали толщиной 0,5-1 мм. На рис. 4 показаны различные способы крепления полюсов.
В машинах небольшой мощности полюсы крепят болтами к валу (рис. 4, г), а в тихоходных машинах большой мощности - к ободу ротора (рис. 4, в). В мощных и относительно быстроходных машинах полюсы крепят к ободу ротора с помощью хвостов, имеющих Т-образную форму или форму ласточкина хвоста (рис. 4, а и б). Такое крепление хотя технологически сложнее, но является более прочным, чем крепление болтами. Обмотку возбуждения в мощных машинах для лучшего охлаждения выполняют из неизолированных медных шин большого сечения, намотанных на ребро. Между соседними витками укладывают изоляционные прокладки, пропитанные в смоле. Катушку запекают и устанавливают на полюсе, на который по периметру предварительно наносят корпусную изоляцию. В машинах небольшой мощности катушки обмотки возбуждения выполняют из изолированных проводников прямоугольного или круглого сечения. На полюсах ротора часто укладывают демпферную обмотку. Ее размещают в пазах полюсных наконечников. Медные стержни этой обмотки, уложенные в пазы, по торцам замыкают пластинами или кольцами так, что образуется клетка. Демпферные обмотки делятся на продольные и продольно-поперечные. Продольная обмотка получается путем замыкания с торцов стержней отдельно каждого полюса (рис. 5). В продольно-поперечной обмотке соединяются по торцам стержни всех полюсов (рис. 6). Демпферная обмотка образует контуры, оси которых совпадают в первом случае только с продольной осью (с осью полюсов), а во втором случае - как с продольной, так и с поперечной осью. Демпферная обмотка выполняет ряд функций. В генераторах она ослабляет влияние несимметричной нагрузки и снижает амплитуду колебаний ротора, возникающих в некоторых случаях при параллельной работе. В двигателях она является пусковой обмоткой, а также снижает амплитуду колебаний ротора при пульсации нагрузки. Явнополюсные роторы применяют в машинах большой мощности с относительно низкой частотой вращения, т. е. имеющих большое число полюсов. Синхронные машины с явнополюсным ротором и горизонтальным валом широко используют в качестве двигателей и генераторов. Общий вид ротора явнополюсной машины показан на рис. 7. Существует специальный класс синхронных явнополюсных генераторов с вертикальным валом, предназначенных для непосредственного соединения с гидравлическими турбинами. Такие генераторы называются гидрогенераторами (рис. 8). В зависимости от мощности турбины и напора воды частота вращения гидрогенераторов колеблется от 50 до 600 об/мин. Для того чтобы при таких частотах вращения получить переменное напряжение частотой 50 Гц, гидрогенераторы должны иметь несколько десятков полюсов.Гидрогенераторы выполняют на большие мощности. В конструктивном отношении гидрогенераторы имеют ряд особенностей. Важным узлом у них является упорный подшипник или подпятник. Он удерживает массу вращающихся частей ротора и турбины и воспринимает давление воды на лопасти турбины. Подпятник представляет собой особый вид подшипника скольжения. Он состоит из вращающейся части - пяты, выполненной в виде диска, укрепленного на роторе, и неподвижной части, находящейся под пятой (собственно подпятник). Для уменьшения потерь в пяте между ее трущимися поверхностями (пяты и собственно подпятника) создается слой смазки достаточной толщины. Для восприятия радиальных усилий, действующих на ротор гидрогенератора, на его валу устанавливают один или два направляющих подшипника. Один подшипник устанавливают при жестком фланцевом соединении валов гидрогенератора и турбины. Вторым направляющим подшипником в этом случае является направляющий подшипник турбины. Подпятник и направляющие подшипники размещаются на крестовинах, которые служат для восприятия и передачи вертикальных и радиальных усилий на фундамент или на корпус статора. Различают верхнюю и нижнюю крестовины. В зависимости от расположения подпятника гидрогенераторы подразделяются на подвесные и зонтичные. В подвесном гидрогенераторе (рис. 9, а) подпятник расположен над ротором на верхней крестовине и весь агрегат «подвешен» к этой крестовине и к подпятнику. В зонтичном гидрогенераторе подпятник расположен на нижней крестовине (рис. 9, б) или на крышке турбины и генератор в виде зонта находится над подпятником. При зонтичном исполнении гидрогенератор имеет меньшие массу и высоту, чем при подвесном исполнении, за счет уменьшения размеров верхней крестовины, имеющей больший диаметр, чем нижняя. Механическая прочность различных деталей гидрогенераторов рассчитывается по так называемой угонной частоте вращения, которая в 2-3 раза больше номинальной и может иметь место в результате разгона ротора при аварийном отключении генератора от сети. Неявнополюсные роторы (рис. 10 и 11) применяют в синхронных машинах большой мощности, имеющих частоту вращения п = 1500÷3000 об/мин. Изготовление машин большой мощности с такими частотами вращения при явнополюсной конструкции ротора невозможно по условиям механической прочности ротора и крепления полюсов и обмотки возбуждения.
Неявнополюсные роторы имеют главным образом синхронные генераторы, предназначенные для непосредственного соединения с паровыми турбинами. Такие машины называют турбогенераторами. Турбогенераторы для тепловых электрических станций имеют частоту вращения 3000 об/мин и два полюса, а для атомных станций - 1500 об/мин и четыре полюса. Ротор турбогенераторов выполняют массивным из цельной стальной поковки. Для роторов турбогенераторов большой мощности применяют высококачественную хромоникелевую или хромоникельмолибденовую сталь. По условиям механической прочности диаметр ротора при частоте вращения 3000 об/мин не должен превышать 1,2-1,25 м. Чтобы обеспечить необходимую механическую жесткость, активная длина ротора должна быть не больше 6,5 м. На рис. 10 дан общий вид, а на рис. 11 - поперечный разрез двухполюсного ротора турбогенератора. На наружной поверхности ротора фрезеруют пазы прямоугольной формы, в которые укладывают катушки обмотки возбуждения. Примерно на одной трети полюсного деления обмотку не укладывают, и эта часть образует так называемый большой зубец, через который проходит основная часть магнитного потока генератора. Иногда в большом зубце выполняют пазы, которые образуют вентиляционные каналы. Из-за больших центробежных сил, действующих на обмотку возбуждения, ее крепление в пазах производят с помощью немагнитных металлических клиньев. Немагнитные клинья ослабляют магнитные потоки пазового рассеяния, которые могут вызывать насыщение зубцов и приводить к уменьшению полезного потока. Пазы большого зубца закрывают магнитными клиньями. Лобовые части обмотки закрепляют роторными бандажами. Обмотка ротора имеет изоляцию класса В или F. Выводы от обмотки возбуждения подсоединяют к контактным кольцам на роторе. Вдоль оси ротора по всей его длине просверливают центральное отверстие, которое служит для исследования материала центральной части поковки и для разгрузки поковки от опасных внутренних напряжений. На рис. 12 дан общий вид турбогенератора. В турбогенераторах функцию демпферной обмотки выполняют массивное тело ротора и клинья. Кроме турбогенераторов с неявнополюсным ротором выпускают быстроходные синхронные двигатели большой мощности - турбодвигатели.
ОХЛАЖДЕНИЕ СИНХРОННЫХ МАШИН При проектировании гидро- и турбогенераторов важнейшей проблемой является проблема их охлаждения. Повышение единичной мощности машин неразрывно связано с совершенствованием системы их охлаждения. Применение более интенсивных способов охлаждения позволило создать турбогенераторы мощностью 800-1200 МВт, имеющие практически такие же габаритные размеры, как турбогенераторы мощностью 100 МВт. В турбогенераторах мощностью до 25 МВт применяется замкнутая система вентиляции, в которой в качестве охлаждающей среды используется воздух. Для машин большей мощности воздух заменяется водородом с избыточным давлением до 5-105 Па. По сравнению с воздухом водород имеет большую теплопроводность и в 10 раз меньшую плотность. Благодаря этому улучшается охлаждение машины и уменьшаются вентиляционные потери.
Охлаждающая среда омывает наружную поверхность обмоток, после чего нагретая среда идет в охладитель, а затем, после охлаждения, возвращается в машину. Такая система охлаждения машин называется замкнутой системой косвенного охлаждения обмоток. Для машин мощностью более 300 МВт замкнутая система вентиляции с водородным охлаждением оказывается недостаточной. В этом случае применяют непосредственное охлаждение обмоток. Обмотки у таких машин изготовляют из полых проводников, внутри которых циркулирует охлаждающая среда (рис. 13). В качестве охлаждающей среды используются газы (воздух, водород) или жидкости (вода, трансформаторное масло). При непосредственном охлаждении обмоток перепады температуры в изоляции исключаются, что позволяет значительно увеличить плотность тока в проводниках. Применяется также непосредственное охлаждение сердечников - с помощью трубок, заделанных в ярмо статора (рис. 14). СИСТЕМЫ ВОЗБУЖДЕНИЯ СИНХРОННЫХ МАШИН Большинство синхронных машин имеет электромагнитное возбуждение. Источниками постоянного тока для обмоток возбуждения являются специальные системы возбуждения, к которым предъявляется ряд важных требований: 1) надежное и устойчивое регулирование тока возбуждения в любых режимах работы машины; 2) достаточное быстродействие, для чего применяется форсировка возбуждения, т. е. быстрое увеличение напряжения возбуждения до предельного значения, называемого потолочным. Форсировка возбуждения применяется для поддержания устойчивой работы машины во время аварий и в процессе ликвидации их последствий. Потолочное напряжение возбуждения выбирают не менее 1,8-2 номинального напряжения возбуждения. Скорость нарастания напряжения при форсировке возбуждения должна быть не менее 1,5-2 номинальных напряжений на контактных кольцах ротора в секунду; 3) быстрое гашение магнитного поля, т. е. уменьшение тока возбуждения машины до нуля без значительного повышения напряжения на ее обхмотках. Необходимость в гашении поля возникает при отключении генератора или повреждении в нем. Для возбуждения синхронных машин применяется несколько систем. Простейшей из них является электромашинная система возбуждения с возбудителем постоянного тока (рис. 15). В этой системе в качестве источника используют специальный генератор постоянного тока GE, называемый возбудителем; он приводится во вращение от вала синхронного генератора, а его мощность составляет 1- 3 % мощности синхронного генератора. Ток возбуждения синхронной машины Iв относительно велик и составляет несколько сотен и даже тысяч ампер. Поэтому его регулируют с помощью реостатов, установленных в цепи возбуждения возбудителя. Возбуждение возбудителя осуществляют по схеме самовозбуждения (рис. 15) или независимого возбуждения от специального генератора постоянного тока GEA, называемого подвозбудителем (рис. 16). Подвозбудитель работает с самовозбуждением, и сопротивление резистора Rш2 при работе генератора не изменяется.
Для гашения магнитного поля применяют автомат гашения поля (АГП), который состоит из контакторов К1 и К2 и гасительного резистора Rp. Гашение поля проводится в следующем порядке. При включенном контакторе К1 включается контактор К2, замыкающий обмотку возбуждения на гасительный резистор, имеющий сопротивления rp≈5 rв, где rв - сопротивление обмотки возбуждения. Затем происходит размыкание контактора К1 и ток в цепи обмотки возбуждения генератора уменьшается (рис. 17). Ток возбуждения можно было бы снизить до нуля отключением только одного контактора К1 без включения гасительного резистора. Ток возбуждения в этом случае исчез бы практически мгновенно. Но мгновенный разрыв цепи возбуждения недопустим, так как из-за большой индуктивности обмотки возбуждения Lв в ней индуктировалась бы большая ЭДС самоиндукции е= - Lв ∙ diв/dt, превышающая в несколько раз номинальное напряжение, в результате чего возможен пробой изоляции этой обмотки. Кроме того, в контакторе К1 при его отключении выделялась бы значительная энергия, запасенная в магнитном поле обмотки возбуждения, что могло бы вызвать разрушение контактора.
Форсировка возбуждения при использовании схем на рис. 15 и 16 осуществляется шунтированием резистора Rш1 включенного в цепь возбуждения возбудителя. В последнее время вместо электромашинных систем получают все большее применение вентильные системы возбуждения с диодами и тиристорами. Эти системы возбуждения могут быть построены на большие мощности и являются более надежными, чем электромашинные. Различают три разновидности вентильных систем возбуждения: систему с самовозбуждением, независимую систему возбуждения и бесщеточную систему возбуждения. В вентильной системе с самовозбуждением (рис. 18) для возбуждения синхронной машины используется энергия, отбираемая от обмотки якоря основного генератора G, которая затем преобразуется статическим преобразователем ПУ в энергию постоянного тока. Эта энергия поступает в обмотку возбуждения. Начальное возбуждение генератора происходит за счет остаточного намагничивания его полюсов.
В вентильной независимой системе возбуждения (рис. 19) энергия для возбуждения получается от специально го возбудителя GN, выполненного в виде трехфазного синхронного генератора. Ротор его укреплен на валу главного генератора. Переменное напряжение возбудителя выпрямляется и подводится к обмотке возбуждения. Разновидностью вентильной независимой системы возбуждения является бесщеточная система возбуждения. В этом случае на валу основной синхронной машины размещается якорь возбудителя переменного тока с трехфазной обмоткой. Переменное напряжение этой обмотки с помощью выпрямительного моста, закрепленного на валу машины, преобразуется в постоянное напряжение и непосредственно (без колец) подается на обмотку возбуждения основного генератора. Обмотка возбуждения возбудителя располагается на статоре и получает питание от независимого источника.
НОМИНАЛЬНЫЕ ДАННЫЕ СИНХРОННЫХ МАШИН К числу номинальных данных синхронных машин, которые указываются на табличке, укрепленной на корпусе машины, относятся: 1) номинальная мощность (для генераторов и компенсаторов-полная мощность, кВ∙А, для двигателей - мощность на валу, кВт); 2) коэффициент мощности (при перевозбуждении); 3) схема соединений обмоток; 4) линейное напряжение, В; 5) частота вращения, об/мин (для гидрогенераторов указывается и угонная частота вращения); 6) частота тока якоря, Гц; 7) линейный ток якоря, А; 8) напряжение и ток обмотки возбуждения. На табличке указываются также завод - изготовитель машины и год выпуска. ХОЛОСТОЙ ХОД СИНХРОННЫХ ГЕНЕРАТОРОВ Под холостым ходом автономного синхронного генератора понимается такой режим его работы, при котором ротор вращается приводным двигателем, а обмотка якоря разомкнута. В этом случае магнитное поле машины создается только током возбуждения. Это поле можно разложить на две составляющие: основное поле, магнитные линии которого проходят через воздушный зазор и сцепляются с обмоткой якоря, и поле рассеяния полюсов, магнитные линии которого сцепляются только с обмоткой возбуждения. Магнитный поток основного поля при вращении полюсов индуктирует в обмотке якоря ЭДС. К этой ЭДС и к напряжению на выводах генератора предъявляется требование, чтобы их форма приближалась к синусоидальной. Это требование обусловлено тем, что при синусоидальных ЭДС и напряжении ток в якоре при линейном характере подключенной цепи также синусоидален. Вследствие этого суммарные потери в генераторе и у потребителей минимальны, так как отсутствуют добавочные потери от высших гармонических. Критерием для оценки кривой ЭДС служит коэффициент искажения синусоидальности этой кривой, под которым понимается выраженное в процентах отношение корня квадратного из суммы квадратов амплитудных (или действующих) значений высших гармонических составляющих данной кривой к амплитудному (или действующему) значению основной гармонической этой кривой:
где ν - порядок гармонической составляющей. Коэффициент искажения кривой линейных ЭДС в трехфазных генераторах переменного тока 50 Гц не должен превышать 5 % для генераторов мощностью выше 100 кВ∙А и 10 % для генераторов мощностью до 100 кВ∙А. Для получения кривой ЭДС, близкой к синусоиде, прежде всего необходимо, чтобы кривая магнитного поля возбуждения машины была по возможности синусоидальной. В явнополюсной машине для этого зазор между полюсом и статором делают неравномерным (рис. 20, а): обычно у краев полюса зазор берут в 1,5-2 раза больше, чем у середины. Распределение магнитной индукции в зазоре между полюсом и якорем при такой конфигурации его наконечника показано на рис. 20, б. Там же штриховой линией для сравнения показана кривая магнитной индукции при равномерном зазоре. В неявнополюсной машине улучшение формы магнитного поля возбуждения достигается выбором соотношения между частями полюсного деления, имеющими и не имеющими обмотку (рис. 21). Пренебрегая влиянием пазов, создающих некоторую ступенчатость в кривой МДС и магнитной индукции, можно принять, что МДС обмотки возбуждения, а также кривая магнитного поля распределены по окружности цилиндрического ротора с неявными полюсами по трапецеидальному закону. Амплитудные значения основных гармоник МДС и индукции поля соответственно равны
где Fв,max и Bδ,max - максимальные значения МДС обмотки возбуждения на один полюс и индукции в зазоре; wв, Iв - число витков обмотки возбуждения на полюс и ток возбуждения; α - длина дуги, соответствующая половине той части полюсного деления, на которой располагается обмотка возбуждения. В целях улучшения кривой магнитного поля возбуждения часть полюса, на которой не укладывается обмотка, выбирают равной τ/3 (α=π/3). В этом случае в кривой магнитной индукции будут отсутствовать все гармоники с номером, кратным 3, а остальные высшие гармоники будут ослаблены. Кроме того, для улучшения формы кривой индуктированной ЭДС применяют распределение обмотки якоря по пазам и укорочение ее шага. В мощных многополюсных машинах улучшению кривой ЭДС способствует применение обмоток с дробным q. Важной характеристикой синхронной машины является характеристика холостого хода. Она представляет собой зависимость ЭДС, индуктируемой в обмотке якоря, от тока возбуждения при неизменной частоте вращения ротора. Эта характеристика позволяет На рис. 22 показана схема для снятия характеристики холостого хода опытным путем. С помощью резистора Rв ток возбуждения изменяют от максимального значения до нуля, записывая при этом показания амперметра и вольтметра. Опытная характеристика холостого хода показана на рис. 23 штриховой линией.При токе возбуждения Iв =0 ЭДС от остаточного магнетизма Eост = (2÷3) %U1ном. При расчетах обычно используют характеристику холостого хода, которую получают, смещая опытную характеристику вправо на расстояние АО (сплошная линия). На основании сравнения характеристик холостого хода современных синхронных генераторов было установлено, что эти характеристики мало отличаются друг от друга, если построение их производить в относительных единицах. При переводе ЭДС в относительные единицы ее текущее значение в вольтах делят на номинальное напряжение якоря в вольтах (E*=E/ U1ном). Относительное значение тока возбуждения находят как отношение текущего значения тока возбуждения в амперах к току, принятому за базовый, в амперах (Iв* = Iв / Iв,б). За базовый ток возбуждения Iв,б принимается ток, соответствующий по характеристике холостого хода E= U1ном. Полученные таким образом характеристики называются нормальными характеристиками холостого хода. Эти характерстики для явнополюсных и неявнополюсных генераторов даны в таблице.
Примечание. E*г,г - ЭДС гидрогенератора; E*г,г - ЭДС турбогенератора.
Related items |